Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
BMC Neurol ; 24(1): 154, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714961

RESUMO

BACKGROUND: Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by CGG repeat expansion of FMR1 gene. Both FXTAS and neuronal intranuclear inclusion disease (NIID) belong to polyglycine diseases and present similar clinical, radiological, and pathological features, making it difficult to distinguish these diseases. Reversible encephalitis-like attacks are often observed in NIID. It is unclear whether they are presented in FXTAS and can be used for differential diagnosis of NIID and FXTAS. CASE PRESENTATION: A 63-year-old Chinese male with late-onset gait disturbance, cognitive decline, and reversible attacks of fever, consciousness impairment, dizziness, vomiting, and urinary incontinence underwent neurological assessment and examinations, including laboratory tests, electroencephalogram test, imaging, skin biopsy, and genetic test. Brain MRI showed T2 hyperintensities in middle cerebellar peduncle and cerebrum, in addition to cerebellar atrophy and DWI hyperintensities along the corticomedullary junction. Lesions in the brainstem were observed. Skin biopsy showed p62-positive intranuclear inclusions. The possibilities of hypoglycemia, lactic acidosis, epileptic seizures, and cerebrovascular attacks were excluded. Genetic analysis revealed CGG repeat expansion in FMR1 gene, and the number of repeats was 111. The patient was finally diagnosed as FXTAS. He received supportive treatment as well as symptomatic treatment during hospitalization. His encephalitic symptoms were completely relieved within one week. CONCLUSIONS: This is a detailed report of a case of FXTAS with reversible encephalitis-like episodes. This report provides new information for the possible and rare features of FXTAS, highlighting that encephalitis-like episodes are common in polyglycine diseases and unable to be used for differential diagnosis.


Assuntos
Ataxia , Encefalite , Síndrome do Cromossomo X Frágil , Tremor , Humanos , Masculino , Pessoa de Meia-Idade , Tremor/diagnóstico , Tremor/genética , Tremor/etiologia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/complicações , Ataxia/diagnóstico , Ataxia/genética , Encefalite/diagnóstico , Encefalite/complicações , Encefalite/genética , Encefalite/patologia , Proteína do X Frágil da Deficiência Intelectual/genética , Diagnóstico Diferencial , Corpos de Inclusão Intranuclear/patologia , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/complicações
2.
Nephron ; 148(4): 264-272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36617405

RESUMO

The clinical features of cerebellar vermis hypoplasia, oligophrenia, ataxia, coloboma, and hepatic fibrosis (COACH) characterize the rare autosomal recessive multisystem disorder called COACH syndrome. COACH syndrome belongs to the spectrum of Joubert syndrome and related disorders (JSRDs) and liver involvement distinguishes COACH syndrome from the rest of the JSRD spectrum. Developmental delay and oculomotor apraxia occur early but with time, these can improve and may not be readily apparent or no longer need active medical management. Congenital hepatic fibrosis and renal disease, on the other hand, may develop late, and the temporal incongruity in organ system involvement may delay the recognition of COACH syndrome. We present a case of a young adult presenting late to a Renal Genetics Clinic for evaluation of renal cystic disease with congenital hepatic fibrosis, clinically suspected to have autosomal recessive polycystic kidney disease. Following genetic testing, a reevaluation of his medical records from infancy, together with reverse phenotyping and genetic phasing, led to a diagnosis of COACH syndrome.


Assuntos
Anormalidades Múltiplas , Encéfalo/anormalidades , Vermis Cerebelar , Cerebelo/anormalidades , Colestase , Coloboma , Doenças Genéticas Inatas , Deficiência Intelectual , Hepatopatias , Malformações do Sistema Nervoso , Rim Policístico Autossômico Recessivo , Adulto Jovem , Humanos , Coloboma/diagnóstico , Coloboma/genética , Rim Policístico Autossômico Recessivo/diagnóstico , Rim Policístico Autossômico Recessivo/genética , Diagnóstico Tardio , Genótipo , Cirrose Hepática/genética , Ataxia/diagnóstico , Ataxia/genética , Deficiência Intelectual/genética , Deficiências do Desenvolvimento
3.
Ophthalmic Genet ; 45(2): 193-200, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37671548

RESUMO

AIM: We describe the ophthalmic manifestations of Neuropathy, ataxia, retinitis pigmentosa (NARP) syndrome in three related patients. METHODS: We examined a mother and her two children, who were carriers of the mt 8993T>G mutation. The mother, patient I, is the first known carrier within the family pedigree. Patients II and III are her children from a non-carrier father. NARP syndrome and the heteroplasmy levels were established prior to the first referral of the patients to the Ophthalmology department.We performed a visual acuity testing, followed by a biomicroscopic and fundus examination, as well as additional multimodal imaging testing: optical coherence tomography (OCT) and fundus autofluorescence (FAF), and functional testing: electroretinogram and visual field. RESULTS: All patients had the clinical manifestations of NARP syndrome, which were variably expressed symptomatically, on the fundus exams, electroretinogram, and visual fields. CONCLUSIONS: Once genetically established, NARP syndrome, as other mitochondrial disorders, has a very variable progression with different degrees of severity. A multimodal approach involving both neurological and ophthalmological diagnosis of NARP syndrome is necessary in order to establish the course of the disease and the measures to be taken.


Assuntos
Hipopituitarismo , Miopatias Mitocondriais , Mães , Retinose Pigmentar , Criança , Feminino , Humanos , Irmãos , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Ataxia/diagnóstico , Ataxia/genética , Mutação , Tomografia de Coerência Óptica
4.
Am J Hum Genet ; 110(7): 1098-1109, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37301203

RESUMO

Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico , Ataxia Cerebelar/genética , Fenótipo , Ataxia/genética , Testes Genéticos , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Ubiquitina-Proteína Ligases/genética
5.
Neuromuscul Disord ; 33(5): 410-416, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037050

RESUMO

HADDTS (Hypotonia, Ataxia, Developmental-Delay and Tooth-enamel defects) is a newly emerging syndrome caused by CTBP1 mutations. Only five reports (13 cases) are available; three contained muscle-biopsy results but none presented illustrated histomyopathology. We report a patient in whom whole-exome sequencing revealed a heterozygous de novo CTBP1 missense mutation (c.1024 C>T; p.(Arg342Trp)). Progressive muscular weakness and myopathic electromyography suggested a myopathological substrate; muscle-biopsy revealed dystrophic features with endomysial-fibrosis, fiber-size variability, necrotic/degenerative vacuolar myopathy, sarcoplasmic/myofibrillar- and striation-alterations, and enzyme histochemical and structural mitochondrial alterations/defects including vacuolar mitochondriopathy. Our report expands the number of cases in this extremely rare condition and provides illustrated myopathology, muscle-MRI, and electron-microscopy. These are crucial for elucidating the nature and extent of the underlying myopathological-correlates and to characterize the myopatholgical phenotype spectrum in this genetic neurodevelopmental condition.


Assuntos
Ataxia Cerebelar , Doenças Musculares , Humanos , Doenças Musculares/genética , Mutação , Ataxia/genética , Hipotonia Muscular/genética , Fatores de Transcrição/genética
6.
Hum Mol Genet ; 32(10): 1647-1659, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36621975

RESUMO

The shaker rat carries a naturally occurring mutation leading to progressive ataxia characterized by Purkinje cell (PC) loss. We previously reported on fine-mapping the shaker locus to the long arm of the rat X chromosome. In this work, we sought to identify the mutated gene underlying the shaker phenotype and confirm its identity by functional complementation. We fine-mapped the candidate region and analyzed cerebellar transcriptomes, identifying a XM_217630.9 (Slc9a6):c.[191_195delinsA] variant in the Slc9a6 gene that segregated with disease. We generated an adeno-associated virus (AAV) targeting Slc9a6 expression to PCs using the mouse L7-6 (L7) promoter. We administered the AAV prior to the onset of PC degeneration through intracerebroventricular injection and found that it reduced the shaker motor, molecular and cellular phenotypes. Therefore, Slc9a6 is mutated in shaker and AAV-based gene therapy may be a viable therapeutic strategy for Christianson syndrome, also caused by Slc9a6 mutation.


Assuntos
Ataxia Cerebelar , Deficiência Intelectual , Ratos , Camundongos , Animais , Células de Purkinje , Ataxia Cerebelar/genética , Ataxia/genética , Mutação , Deficiência Intelectual/genética
7.
Brain ; 146(8): 3470-3483, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454683

RESUMO

Distal hereditary motor neuropathy represents a group of motor inherited neuropathies leading to distal weakness. We report a family of two brothers and a sister affected by distal hereditary motor neuropathy in whom a homozygous variant c.3G>T (p.1Met?) was identified in the COQ7 gene. This gene encodes a protein required for coenzyme Q10 biosynthesis, a component of the respiratory chain in mitochondria. Mutations of COQ7 were previously associated with severe multi-organ disorders characterized by early childhood onset and developmental delay. Using patient blood samples and fibroblasts derived from a skin biopsy, we investigated the pathogenicity of the variant of unknown significance c.3G>T (p.1Met?) in the COQ7 gene and the effect of coenzyme Q10 supplementation in vitro. We showed that this variation leads to a severe decrease in COQ7 protein levels in the patient's fibroblasts, resulting in a decrease in coenzyme Q10 production and in the accumulation of 6-demethoxycoenzyme Q10, the COQ7 substrate. Interestingly, such accumulation was also found in the patient's plasma. Normal coenzyme Q10 and 6-demethoxycoenzyme Q10 levels were restored in vitro by using the coenzyme Q10 precursor 2,4-dihydroxybenzoic acid, thus bypassing the COQ7 requirement. Coenzyme Q10 biosynthesis deficiency is known to impair the mitochondrial respiratory chain. Seahorse experiments showed that the patient's cells mainly rely on glycolysis to maintain sufficient ATP production. Consistently, the replacement of glucose by galactose in the culture medium of these cells reduced their proliferation rate. Interestingly, normal proliferation was restored by coenzyme Q10 supplementation of the culture medium, suggesting a therapeutic avenue for these patients. Altogether, we have identified the first example of recessive distal hereditary motor neuropathy caused by a homozygous variation in the COQ7 gene, which should thus be included in the gene panels used to diagnose peripheral inherited neuropathies. Furthermore, 6-demethoxycoenzyme Q10 accumulation in the blood can be used to confirm the pathogenic nature of the mutation. Finally, supplementation with coenzyme Q10 or derivatives should be considered to prevent the progression of COQ7-related peripheral inherited neuropathy in diagnosed patients.


Assuntos
Doenças Mitocondriais , Ubiquinona , Masculino , Humanos , Pré-Escolar , Ubiquinona/uso terapêutico , Mutação/genética , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Ataxia/genética
8.
J Neurol ; 270(1): 208-222, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36152050

RESUMO

This narrative review aims at providing an update on the management of inherited cerebellar ataxias (ICAs), describing main clinical entities, genetic analysis strategies and recent therapeutic developments. Initial approach facing a patient with cerebellar ataxia requires family medical history, physical examination, exclusions of acquired causes and genetic analysis, including Next-Generation Sequencing (NGS). To guide diagnosis, several algorithms and a new genetic nomenclature for recessive cerebellar ataxias have been proposed. The challenge of NGS analysis is the identification of causative variant, trio analysis being usually the most appropriate option. Public genomic databases as well as pathogenicity prediction software facilitate the interpretation of NGS results. We also report on key clinical points for the diagnosis of the main ICAs, including Friedreich ataxia, CANVAS, polyglutamine spinocerebellar ataxias, Fragile X-associated tremor/ataxia syndrome. Rarer forms should not be neglected because of diagnostic biomarkers availability, disease-modifying treatments, or associated susceptibility to malignancy. Diagnostic difficulties arise from allelic and phenotypic heterogeneity as well as from the possibility for one gene to be associated with both dominant and recessive inheritance. To complicate the phenotype, cerebellar cognitive affective syndrome can be associated with some subtypes of cerebellar ataxia. Lastly, we describe new therapeutic leads: antisense oligonucleotides approach in polyglutamine SCAs and viral gene therapy in Friedreich ataxia. This review provides support for diagnosis, genetic counseling and therapeutic management of ICAs in clinical practice.


Assuntos
Ataxia Cerebelar , Ataxia de Friedreich , Ataxias Espinocerebelares , Humanos , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Ataxia Cerebelar/terapia , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/genética , Ataxia de Friedreich/terapia , Mutação , Ataxia/genética , Ataxias Espinocerebelares/genética
9.
Am J Hum Genet ; 109(10): 1932-1943, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36206744

RESUMO

Proteins containing the FERM (four-point-one, ezrin, radixin, and moesin) domain link the plasma membrane with cytoskeletal structures at specific cellular locations and have been implicated in the localization of cell-membrane-associated proteins and/or phosphoinositides. FERM domain-containing protein 5 (FRMD5) localizes at cell adherens junctions and stabilizes cell-cell contacts. To date, variants in FRMD5 have not been associated with a Mendelian disease in OMIM. Here, we describe eight probands with rare heterozygous missense variants in FRMD5 who present with developmental delay, intellectual disability, ataxia, seizures, and abnormalities of eye movement. The variants are de novo in all for whom parental testing was available (six out of eight probands), and human genetic datasets suggest that FRMD5 is intolerant to loss of function (LoF). We found that the fly ortholog of FRMD5, CG5022 (dFrmd), is expressed in the larval and adult central nervous systems where it is present in neurons but not in glia. dFrmd LoF mutant flies are viable but are extremely sensitive to heat shock, which induces severe seizures. The mutants also exhibit defective responses to light. The human FRMD5 reference (Ref) cDNA rescues the fly dFrmd LoF phenotypes. In contrast, all the FRMD5 variants tested in this study (c.340T>C, c.1051A>G, c.1053C>G, c.1054T>C, c.1045A>C, and c.1637A>G) behave as partial LoF variants. In addition, our results indicate that two variants that were tested have dominant-negative effects. In summary, the evidence supports that the observed variants in FRMD5 cause neurological symptoms in humans.


Assuntos
Deficiência Intelectual , Animais , Ataxia/genética , DNA Complementar , Deficiências do Desenvolvimento/genética , Movimentos Oculares , Humanos , Deficiência Intelectual/genética , Proteínas de Membrana , Fosfatidilinositóis , Convulsões , Proteínas Supressoras de Tumor/genética
10.
Cell Death Dis ; 13(10): 855, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207321

RESUMO

Calcium concentration must be finely tuned in all eukaryotic cells to ensure the correct performance of its signalling function. Neuronal activity is exquisitely dependent on the control of Ca2+ homeostasis: its alterations ultimately play a pivotal role in the origin and progression of many neurodegenerative processes. A complex toolkit of Ca2+ pumps and exchangers maintains the fluctuation of cytosolic Ca2+ concentration within the appropriate threshold. Two ubiquitous (isoforms 1 and 4) and two neuronally enriched (isoforms 2 and 3) of the plasma membrane Ca2+ATPase (PMCA pump) selectively regulate cytosolic Ca2+ transients by shaping the sub-plasma membrane (PM) microdomains. In humans, genetic mutations in ATP2B1, ATP2B2 and ATP2B3 gene have been linked with hearing loss, cerebellar ataxia and global neurodevelopmental delay: all of them were found to impair pump activity. Here we report three additional mutations in ATP2B3 gene corresponding to E1081Q, R1133Q and R696H amino acids substitution, respectively. Among them, the novel missense mutation (E1081Q) immediately upstream the C-terminal calmodulin-binding domain (CaM-BD) of the PMCA3 protein was present in two patients originating from two distinct families. Our biochemical and molecular studies on PMCA3 E1081Q mutant have revealed a splicing variant-dependent effect of the mutation in shaping the sub-PM [Ca2+]. The E1081Q substitution in the full-length b variant abolished the capacity of the pump to reduce [Ca2+] in the sub-PM microdomain (in line with the previously described ataxia-related PMCA mutations negatively affecting Ca2+ pumping activity), while, surprisingly, its introduction in the truncated a variant selectively increased Ca2+ extrusion activity in the sub-PM Ca2+ microdomains. These results highlight the importance to set a precise threshold of [Ca2+] by fine-tuning the sub-PM microdomains and the different contribution of the PMCA splice variants in this regulation.


Assuntos
Ataxia Cerebelar , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Aminoácidos , Ataxia/genética , Ataxia/metabolismo , Cálcio/metabolismo , Calmodulina/genética , Membrana Celular/metabolismo , Ataxia Cerebelar/genética , Ataxia Cerebelar/metabolismo , Humanos , Mutação/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
12.
Open Heart ; 9(1)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296520

RESUMO

For reasons that remain unclear, endogenous synthesis and tissue levels of coenzyme Q10 (CoQ10) tend to decline with increasing age in at least some tissues. When CoQ10 levels are sufficiently low, this compromises the efficiency of the mitochondrial electron transport chain, such that production of superoxide by site 2 increases and the rate of adenosine triphosphate production declines. Moreover, CoQ10 deficiency can be expected to decrease activities of Sirt1 and Sirt3 deacetylases, believed to be key determinants of health span. Reduction of the cytoplasmic and mitochondrial NAD+/NADH ratio consequent to CoQ10 deficit can be expected to decrease the activity of these deacetylases by lessening availability of their obligate substrate NAD+ The increased oxidant production induced by CoQ10 deficiency can decrease the stability of Sirt1 protein by complementary mechanisms. And CoQ10 deficiency has also been found to lower mRNA expression of Sirt1. An analysis of the roles of Sirt1/Sirt3 in modulation of cellular function helps to rationalise clinical benefits of CoQ10 supplementation reported in heart failure, hypertension, non-alcoholic fatty liver disease, metabolic syndrome and periodontal disease. Hence, correction of CoQ10 deficiency joins a growing list of measures that have potential for amplifying health protective Sirt1/Sirt3 activities.


Assuntos
Doenças Mitocondriais , Sirtuína 1 , Ataxia/genética , Ataxia/metabolismo , Humanos , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Sirtuína 1/genética , Ubiquinona/deficiência , Ubiquinona/metabolismo , Ubiquinona/farmacologia
13.
Hum Mol Genet ; 31(14): 2317-2332, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35137065

RESUMO

Repeat associated non-AUG (RAN) translation of CGG repeats in the 5'UTR of FMR1 produces toxic proteins that contribute to fragile X-associated tremor/ataxia syndrome (FXTAS) pathogenesis. The most abundant RAN product, FMRpolyG, initiates predominantly at an ACG upstream of the repeat. Accurate FMRpolyG measurements in FXTAS patients are lacking. We used data-dependent acquisition and parallel reaction monitoring (PRM) mass spectrometry coupled with stable isotope labeled standard peptides to identify signature FMRpolyG fragments in patient samples. Following immunoprecipitation, PRM detected FMRpolyG signature peptides in transfected cells, and FXTAS tissues and cells, but not in controls. We identified two amino-terminal peptides: an ACG-initiated Ac-MEAPLPGGVR and a GUG-initiated Ac-TEAPLPGGVR, as well as evidence for RAN translation initiation within the CGG repeat itself in two reading frames. Initiation at all sites increased following cellular stress, decreased following eIF1 overexpression and was eIF4A and M7G cap-dependent. These data demonstrate that FMRpolyG is quantifiable in human samples and FMR1 RAN translation initiates via similar mechanisms for near-cognate codons and within the repeat through processes dependent on available initiation factors and cellular environment.


Assuntos
Ataxia , Síndrome do Cromossomo X Frágil , Tremor , Proteína ran de Ligação ao GTP , Ataxia/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Humanos , Peptídeos/metabolismo , Tremor/genética , Expansão das Repetições de Trinucleotídeos , Proteína ran de Ligação ao GTP/genética
14.
Eur J Med Genet ; 65(4): 104450, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35219921

RESUMO

OBJECTIVE: This review article focuses on clinical and genetic features of paroxysmal neurological disorders featuring episodic ataxia (EA) and epilepsy and help clinicians recognize, diagnose, and treat patients with co-existing EA and epilepsy. It also provides an overview of genes and molecular mechanisms underlying these intriguing neurogenetic disorders. METHODS: Based on a literature review on Pubmed database, a list of genes linked to paroxysmal neurological disorders featuring EA and epilepsy were compiled. Online Mendelian Inheritance in Man (OMIM) was used to identify further reports relevant to each gene. RESULTS: Among the various forms of EAs, only EA1 (KCNA1), EA2 (CACNA1A), EA5 (CACNB4), EA6 (SLC1A3), and EA9 (SCN2A) phenotypes with associated epilepsy have been described. Next-generation sequencing (NGS) has helped in the identification of other genes (e.g.: KCNA2, ATP1A3, SLC2A1, PRRT2) which have shown an overlapping phenotype with EA and epilepsy. CONCLUSION: Overlapping clinical features between EA and epilepsy may hinder an accurate classification, and complex genotype-phenotype correlation may often lead to misdiagnosis. NGS has increased the awareness of common genetic etiologies for these conditions. In the future, extensive genetic and phenotypic characterizations can help us to elucidate the boundaries of a wide phenotypic spectrum. These insights may help develop new precision therapies in paroxysmal neurological disorders featuring EA and epilepsy.


Assuntos
Ataxia , Epilepsia , Ataxia/genética , Epilepsia/genética , Estudos de Associação Genética , Humanos , Mutação , Fenótipo , ATPase Trocadora de Sódio-Potássio/genética
15.
Hum Mol Genet ; 31(6): 958-974, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-34635923

RESUMO

Mutations in mitochondrial DNA encoded subunit of ATP synthase, MT-ATP6, are frequent causes of neurological mitochondrial diseases with a range of phenotypes from Leigh syndrome and NARP to ataxias and neuropathies. Here we investigated the functional consequences of an unusual heteroplasmic truncating mutation m.9154C>T in MT-ATP6, which caused peripheral neuropathy, ataxia and IgA nephropathy. ATP synthase not only generates cellular ATP, but its dimerization is required for mitochondrial cristae formation. Accordingly, the MT-ATP6 truncating mutation impaired the assembly of ATP synthase and disrupted cristae morphology, supporting our molecular dynamics simulations that predicted destabilized a/c subunit subcomplex. Next, we modeled the effects of the truncating mutation using patient-specific induced pluripotent stem cells. Unexpectedly, depending on mutation heteroplasmy level, the truncation showed multiple threshold effects in cellular reprogramming, neurogenesis and in metabolism of mature motor neurons (MN). Interestingly, MN differentiation beyond progenitor stage was impaired by Notch hyperactivation in the MT-ATP6 mutant, but not by rotenone-induced inhibition of mitochondrial respiration, suggesting that altered mitochondrial morphology contributed to Notch hyperactivation. Finally, we also identified a lower mutation threshold for a metabolic shift in mature MN, affecting lactate utilization, which may be relevant for understanding the mechanisms of mitochondrial involvement in peripheral motor neuropathies. These results establish a critical and disease-relevant role for ATP synthase in human cell fate decisions and neuronal metabolism.


Assuntos
Heteroplasmia , ATPases Mitocondriais Próton-Translocadoras , Trifosfato de Adenosina , Ataxia/genética , DNA Mitocondrial/genética , Humanos , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Neurônios Motores/metabolismo , Mutação
16.
Neurol Sci ; 43(2): 1071-1077, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34296356

RESUMO

Mutations in POLR3A are characterized by high phenotypic heterogeneity, with manifestations ranging from severe childhood-onset hypomyelinating leukodystrophic syndromes to milder and later-onset gait disorders with central hypomyelination, with or without additional non-neurological signs. Recently, a milder phenotype consisting of late-onset spastic ataxia without hypomyelinating leukodystrophy has been suggested to be specific to the intronic c.1909 + 22G > A mutation in POLR3A. Here, we present 10 patients from 8 unrelated families with POLR3A-related late-onset spastic ataxia, all harboring the c.1909 + 22G > A variant. Most of them showed an ataxic-spastic picture, two a "pure" cerebellar phenotype, and one a "pure" spastic presentation. The non-neurological findings typically associated with POLR3A mutations were absent in all the patients. The main findings on brain MRI were bilateral hyperintensity along the superior cerebellar peduncles on FLAIR sequences, observed in most of the patients, and cerebellar and/or spinal cord atrophy, found in half of the patients. Only one patient exhibited central hypomyelination. The POLR3A mutations present in this cohort were the c.1909 + 22G > A splice site variant found in compound heterozygosity with six additional variants (three missense, two nonsense, one splice) and, in one patient, with a novel large deletion involving exons 14-18. Interestingly, this patient had the most "complex" presentation among those observed in our cohort; it included some neurological and non-neurological features, such as seizures, neurosensory deafness, and lipomas, that have not previously been reported in association with late-onset POLR3A-related disorders, and therefore further expand the phenotype.


Assuntos
Atrofia Óptica , Paraparesia Espástica , Paraplegia Espástica Hereditária , Ataxias Espinocerebelares , Ataxia/diagnóstico por imagem , Ataxia/genética , Criança , Humanos , Mutação , Fenótipo , RNA Polimerase III/genética , Paraplegia Espástica Hereditária/diagnóstico por imagem , Paraplegia Espástica Hereditária/genética
17.
Am J Med Genet A ; 188(4): 1259-1262, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34931442

RESUMO

Posterior column ataxia with retinitis pigmentosa (PCARP) is a rare autosomal recessive condition due to variants in the Feline Leukemia Virus Subgroup C Cellular Receptor 1 (FLVCR1) gene which was first described in 1997. In this article, we describe a young female patient with a childhood diagnosis of retinitis pigmentosa and learning disability, presenting with progressive ataxia from her late teens. Examination revealed spastic lower limbs with absent reflexes, and reduced vibration and joint position sensation. Magnetic resonance imaging showed normal cerebellar volume and linear signal abnormality within the posterior columns of her spinal cord. Trio exome analysis confirmed two variants in FLVCR1. Our case extends the phenotype of PCARP to include learning disability and developmental delay, and highlights the importance of considering this rare condition in young adults or children with visual impairment and ataxia.


Assuntos
Deficiências da Aprendizagem , Retinose Pigmentar , Adolescente , Ataxia/diagnóstico , Ataxia/genética , Criança , Feminino , Humanos , Proteínas de Membrana Transportadoras/genética , Mutação , Linhagem , Fenótipo , Receptores Virais/genética , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Transtornos de Sensação , Degenerações Espinocerebelares
18.
Horm Res Paediatr ; 94(11-12): 448-455, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34706368

RESUMO

Coats plus syndrome is an autosomal recessive multisystemic and pleiotropic disorder affecting the eyes, brain, bone, and gastrointestinal tract, usually caused by compound heterozygous variants of the conserved telomere maintenance component 1 gene (CTC1), involved in telomere homeostasis and replication. So far, most reported patients are compound heterozygous for a truncating mutation and a missense variant. The phenotype is believed to result from telomere dysfunction, with accumulation of DNA damage, cellular senescence, and stem cell depletion. Here, we report a 23-year-old female with prenatal and postnatal growth retardation, microcephaly, osteopenia, recurrent fractures, intracranial calcification, leukodystrophy, parenchymal brain cysts, bicuspid aortic valve, and primary ovarian failure. She carries a previously reported maternally inherited pathogenic variant in exon 5 (c.724_727del, p.(Lys242Leufs*41)) and a novel, paternally inherited splice site variant (c.1617+5G>T; p.(Lys480Asnfs*17)) in intron 9. CTC1 transcript analysis showed that the latter resulted in skipping of exon 9. A trace of transcripts was normally spliced resulting in the presence of a low level of wild-type CTC1 transcripts. We speculate that ovarian failure is caused by telomere shortening or chromosome cohesion failure in oocytes and granulosa cells, with early decrease in follicular reserve. This is the first patient carrying 2 truncating CTC1 variants and the first presenting primary ovarian failure.


Assuntos
Calcinose , Cistos do Sistema Nervoso Central , Leucoencefalopatias , Ataxia/genética , Ataxia/patologia , Neoplasias Encefálicas , Calcinose/genética , Cistos do Sistema Nervoso Central/genética , Cistos do Sistema Nervoso Central/patologia , Feminino , Humanos , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Espasticidade Muscular , Mutação , Doenças Retinianas , Convulsões , Proteínas de Ligação a Telômeros/genética
19.
Nucleic Acids Res ; 49(16): 9479-9495, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34358321

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by a limited expansion of CGG repeats in the FMR1 gene. Degeneration of neurons in FXTAS cell models can be triggered by accumulation of polyglycine protein (FMRpolyG), a by-product of translation initiated upstream to the repeats. Specific aims of our work included testing if naphthyridine-based molecules could (i) block FMRpolyG synthesis by binding to CGG repeats in RNA, (ii) reverse pathological alterations in affected cells and (iii) preserve the content of FMRP, translated from the same FMR1 mRNA. We demonstrate that cyclic mismatch binding ligand CMBL4c binds to RNA structure formed by CGG repeats and attenuates translation of FMRpolyG and formation of nuclear inclusions in cells transfected with vectors expressing RNA with expanded CGG repeats. Moreover, our results indicate that CMBL4c delivery can reduce FMRpolyG-mediated cytotoxicity and apoptosis. Importantly, its therapeutic potential is also observed once the inclusions are already formed. We also show that CMBL4c-driven FMRpolyG loss is accompanied by partial FMRP reduction. As complete loss of FMRP induces FXS in children, future experiments should aim at evaluation of CMBL4c therapeutic intervention in differentiated tissues, in which FMRpolyG translation inhibition might outweigh adverse effects related to FMRP depletion.


Assuntos
Ataxia/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Naftiridinas/farmacologia , Tremor/genética , Expansão das Repetições de Trinucleotídeos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ataxia/tratamento farmacológico , Ataxia/patologia , Proliferação de Células/efeitos dos fármacos , Proteína do X Frágil da Deficiência Intelectual/antagonistas & inibidores , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/patologia , Células HeLa , Humanos , Ligantes , Neurônios/efeitos dos fármacos , Neurônios/patologia , Peptídeos/genética , Biossíntese de Proteínas/efeitos dos fármacos , Ressonância de Plasmônio de Superfície , Tremor/tratamento farmacológico , Tremor/patologia , Expansão das Repetições de Trinucleotídeos/genética , Repetições de Trinucleotídeos/efeitos dos fármacos , Repetições de Trinucleotídeos/genética
20.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34417303

RESUMO

Sterile α motif domain-containing protein 9-like (SAMD9L) is encoded by a hallmark interferon-induced gene with a role in controlling virus replication that is not well understood. Here, we analyze SAMD9L function from the perspective of human mutations causing neonatal-onset severe autoinflammatory disease. Whole-genome sequencing of two children with leukocytoclastic panniculitis, basal ganglia calcifications, raised blood inflammatory markers, neutrophilia, anemia, thrombocytopaenia, and almost no B cells revealed heterozygous de novo SAMD9L mutations, p.Asn885Thrfs*6 and p.Lys878Serfs*13. These frameshift mutations truncate the SAMD9L protein within a domain a region of homology to the nucleotide-binding and oligomerization domain (NOD) of APAF1, ∼80 amino acids C-terminal to the Walker B motif. Single-cell analysis of human cells expressing green fluorescent protein (GFP)-SAMD9L fusion proteins revealed that enforced expression of wild-type SAMD9L repressed translation of red fluorescent protein messenger RNA and globally repressed endogenous protein translation, cell autonomously and in proportion to the level of GFP-SAMD9L in each cell. The children's truncating mutations dramatically exaggerated translational repression even at low levels of GFP-SAMD9L per cell, as did a missense Arg986Cys mutation reported recurrently as causing ataxia pancytopenia syndrome. Autoinflammatory disease associated with SAMD9L truncating mutations appears to result from an interferon-induced translational repressor whose activity goes unchecked by the loss of C-terminal domains that may normally sense virus infection.


Assuntos
Ataxia/patologia , Regulação da Expressão Gênica , Mutação de Sentido Incorreto , Síndromes Mielodisplásicas/patologia , Pancitopenia/patologia , Biossíntese de Proteínas , Proteínas Supressoras de Tumor/genética , Ataxia/genética , Criança , Feminino , Heterozigoto , Humanos , Recém-Nascido , Masculino , Síndromes Mielodisplásicas/genética , Pancitopenia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA